Assembly of a fragmented ribonucleotide reductase by protein interaction domains derived from a mobile genetic element

نویسندگان

  • Mikael Crona
  • Connor Moffatt
  • Nancy C. Friedrich
  • Anders Hofer
  • Britt-Marie Sjöberg
  • David R. Edgell
چکیده

Ribonucleotide reductase (RNR) is a critical enzyme of nucleotide metabolism, synthesizing precursors for DNA replication and repair. In prokaryotic genomes, RNR genes are commonly targeted by mobile genetic elements, including free standing and intron-encoded homing endonucleases and inteins. Here, we describe a unique molecular solution to assemble a functional product from the RNR large subunit gene, nrdA that has been fragmented into two smaller genes by the insertion of mobE, a mobile endonuclease. We show that unique sequences that originated during the mobE insertion and that are present as C- and N-terminal tails on the split NrdA-a and NrdA-b polypeptides, are absolutely essential for enzymatic activity. Our data are consistent with the tails functioning as protein interaction domains to assemble the tetrameric (NrdA-a/NrdA-b)(2) large subunit necessary for a functional RNR holoenzyme. The tails represent a solution distinct from RNA and protein splicing or programmed DNA rearrangements to restore function from a fragmented coding region and may represent a general mechanism to neutralize fragmentation of essential genes by mobile genetic elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rare group I intron with insertion sequence element in a bacterial ribonucleotide reductase gene.

A rare group I intron in a cyanobacterial ribonucleotide reductase gene has been characterized. It contains a mobile insertion sequence element not required for RNA splicing. Ribonucleotide reductase genes were found to be hot spots for all three types of self-splicing intervening sequences, including group I and II introns and inteins.

متن کامل

Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens

Glutaredoxin proteins (GLXRs) are essential components of the glutathione system that reductively detoxify substances such as arsenic and peroxides and are important in the synthesis of DNA via ribonucleotide reductases. NMR solution structures of glutaredoxin domains from two Gram-negative opportunistic pathogens, Brucella melitensis and Bartonella henselae, are presented. These domains lack t...

متن کامل

COP9 Signalosome: A Provider of DNA Building Blocks

In fission yeast, the COP9 signalosome is required to activate ribonucleotide reductase for DNA synthesis. This is mediated via the ubiquitin ligase Pcu4, activation of which leads to degradation of the scaffold protein Spd1, which anchors the small ribonucleotide reductase subunit in the nucleus away from the large subunit in the cytoplasm.

متن کامل

Discovering Domains Mediating Protein Interactions

Background: Protein-protein interactions do not provide any direct information re‌garding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting do‌main pairs. However they do not consider the in...

متن کامل

Investigation of solvent effect on the active site energy of Carbonic Anhydrase and Ribonucleotide Reductase

Enzymes catalyze many biological reactions. The rates of chemical reaction in the presence ofenzymes are, in some cases, accelerated more than 10 orders of magnitude relative to thecorresponding rates in solution.In this paper a comparison between optimized structures of two enzyme molecules in aspect ofenergy and dipole moment in different conditions including presence of metallic ion, without...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011